Skip to main content
Chemistry LibreTexts

1.4b: Bonding and anti-bonding orbitals

  • Page ID
    20870
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    We look, first, at the form of the orbitals that correspond to the energies \(\Delta E_{\pm}\), respectively. These can be obtained by solving for the variational coefficients, \(C_1\) and \(C_2\). These will be given by the matrix equation:

    \begin{displaymath}
\left(\matrix{H_{11} & H_{12} \cr H_{21} & H_{22}}\right)
\l...
...{12} \cr S_{21} & 1}\right)
\left(\matrix{C_1 \cr C_2}\right)
\end{displaymath}

    For example, using \(E_+=(H_{11}-H_{12})/(1-S)\), the following equations for the coefficients are obtained:

    \(\displaystyle H_{11} C_1 + H_{12}C_2\) \(\textstyle =\) \(\displaystyle {H_{11}-H_{12} \over 1-S}(C_1+SC_2)\)
    \(\displaystyle H_{12} C_1 + H_{11}C_2\) \(\textstyle =\) \(\displaystyle {H_{11}-H_{12} \over 1-S}(SC_1+C_2)\)

    which are not independent but are satisfied if \(C_1=-C_2\equiv C_+\). Similarly, for \(E=E_-\), we obtain the two equations:

    \(\displaystyle (H_{11}C_1 + H_{12}C_2)\) \(\textstyle =\) \(\displaystyle {H_{11}+H_{12} \over 1+S}(C_1+SC_2)\)
    \(\displaystyle (H_{12}C_1 + H_{11}C_2)\) \(\textstyle =\) \(\displaystyle {H_{11}+H_{12} \over 1+S}(SC_1+C_2)\)

    which are satisfied if \(C_1=C_2\equiv C_-\). Thus, the two states corresponding to \(E_{\pm}\) are

    \(\displaystyle \vert\psi_-\rangle\) \(\textstyle =\) \(\displaystyle C_-\left(\vert\psi_1\rangle + \vert\psi_2\rangle \right)\)
    \(\displaystyle \vert\psi_+\rangle\) \(\textstyle =\) \(\displaystyle C_+\left(\vert\psi_1\rangle - \vert\psi_2\rangle \right)\)

    The overall constants \(C_{\pm}\) are determined by requiring that \(\vert\psi_{\pm}\rangle \) both be normalized. For \(C_-\), for example, we find

    \(\displaystyle \langle \psi_-\vert\psi_-\rangle\) \(\textstyle =\) $\displaystyle \vert C_-\vert^2
\left(\langle \psi_1\vert + \langle \psi_2\vert\right)
\left(\vert\psi_1\rangle + \psi_2\rangle \right)$
    \(\textstyle =\) \(\displaystyle \vert C_-\vert^2\left(1+1+\langle \psi_1\vert\psi_2\rangle + \langle \psi_2\vert\psi_1\rangle \right)\)
    \(\textstyle =\) \(\displaystyle 2\vert C_-\vert^2(1+S)\)
    \(\textstyle =\) \(\displaystyle 1\)

    which requires that

    \[C_- = {1 \over 2\sqrt{1+S}}\]

    Similarly, it can be shown that

    \[C_+ = {1 \over 2\sqrt{1-S}}\]

    Thus, the two states become

    \(\displaystyle \vert\psi_-\rangle\) \(\textstyle =\) \(\displaystyle {1 \over 2\sqrt{1+S}}\left(\vert\psi_1\rangle + \vert\psi_2\rangle \right)\)
    \(\displaystyle \vert\psi_+\rangle\) \(\textstyle =\) \(\displaystyle {1 \over 2\sqrt{1-S}}\left(\vert\psi_1\rangle - \vert\psi_2\rangle \right)\)

    Notice that these are orthogonal:

    \[\langle \psi_+\vert\psi_-\rangle = 0\]

    Projecting onto a coordinate basis, we have

    \(\displaystyle \psi_-({\bf r})\) \(\textstyle =\) \(\displaystyle {1 \over 2\sqrt{1+S}}\left(\psi_1({\bf r}) + \psi_2({\bf r})\right)\)
    \(\displaystyle \psi_+({\bf r})\) \(\textstyle =\) \(\displaystyle {1 \over 2\sqrt{1+S}}\left(\psi_1({\bf r}) - \psi_2({\bf r})\right)\)

    The state \(\psi_-\), which corresponds to the energy \(E_-\) admits a chemical bond and is, therefore, called a bonding state. The state \(\psi_+\), which corresponds to the energy \(E_+\) does not admit a chemical bond and is, therefore, called an anti-bonding state. \(\psi_+({\bf r})\) and \(\psi_-({\bf r})\) are examples of what are called molecular orbitals. In this case, they are constructed from linear combinations of atomic orbitals.

    The functional form of the two molecular orbitals for H\(_2^+\) within the current approximation scheme is

    \(\displaystyle \langle {\bf r}\vert\psi_-\rangle\) \(\textstyle =\) $\displaystyle \psi_-({\bf r}) =
{1 \over 2\sqrt{1+S}}\left({1 \over \pi a_0^3}\...
...rt/a_0}+e^{-\left\vert{\bf r} - {R \over 2}\hat{{\bf z}}\right\vert/a_0}\right]$
    \(\displaystyle \langle {\bf r}\vert\psi_+\rangle\) \(\textstyle =\) $\displaystyle \psi_+({\bf r}) =
{1 \over 2\sqrt{1-S}}\left({1 \over \pi a_0^3}\...
...rt/a_0}-e^{-\left\vert{\bf r} - {R \over 2}\hat{{\bf z}}\right\vert/a_0}\right]$

    The contours of these functions are sketched below (the top plot shows the two individual two atomic orbitals, while the middle and bottom show the linear combinations \(\psi_-({\bf r})\) and \(\psi_+({\bf r})\), respectively):

    \(\psi_1({\bf r})\) and \(\psi_2({\bf r})\) have the same value at the origin and very similarly values near the origin, it is clear that the electron probability density in this region will intensify for \(\psi_-({\bf r})\) which is the sum of \(\psi_1({\bf r})\) and \(\psi_2({\bf r})\). This clearly corresponds to a chemical bonding situation. In contrast, for \(\psi_+({\bf r})\), which is the difference between \(\psi_1({\bf r})\) and \(\psi_2({\bf r})\), there will be a deficit of electron density in the region between the two protons, which is indicative of a non-bonding situation.

    This page titled 1.4b: Bonding and anti-bonding orbitals is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Mark E. Tuckerman.

    • Was this article helpful?